Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Modern vehicles are largely controlled by many embedded computers, known as Electronic Control Units (ECUs). The increased use of ECUs has brought many in-vehicle security concerns. Specifically, injection of malware into ECUs poses a significant risk to vehicle operation. Indeed, many ECU malware injection attacks have been performed, and much work has been introduced towards mitigating these vulnerabilities. A main defense is for ECUs to perform a self-attestation over their firmware state. However, most current self-attestation solutions do not enable runtime checking due to their high computational cost. Additionally, existing solutions mostly do not incorporate any ECU self-repairing in coordination with the attestation mechanisms. In this work, we have designed FSAVER, a highly efficient self-attestation and self-repair framework for in-vehicle ECUs. For the self-attestation, we adapt highly efficient spot-checking techniques, so that the firmware can be checked periodically at runtime. To perform these attestations, we rely on the TEE already equipped within each ECU. For self-repair, we take advantage of the isolated flash memory controller (FMC) in the storage device. Specifically, we coordinate it with the update mechanism and self-attestations to guarantee that the latest benign firmware version can always be restored. To realize this while malware is running, a special mechanism has been carefully developed to notify the FMC of the malicious presence.more » « lessFree, publicly-accessible full text available June 27, 2026
-
Abstract Ransomware attacks are increasingly prevalent in recent years. Crypto-ransomware corrupts files on an infected device and demands a ransom to recover them. In computing devices using flash memory storage (e.g., SSD, MicroSD, etc.), existing designs recover the compromised data by extracting the entire raw flash memory image, restoring the entire external storage to a good prior state. This is feasible through taking advantage of the out-of-place updates feature implemented in the flash translation layer (FTL). However, due to the lack of “file” semantics in the FTL, such a solution does not allow a fine-grained data recovery in terms of files. Considering the file-centric nature of ransomware attacks, recovering the entire disk is mostly unnecessary. In particular, the user may just wish a speedy recovery of certain critical files after a ransomware attack. In this work, we have designed$$\textsf{FFRecovery}$$ , a new ransomware defense strategy that can support fine-grained per file data recovery after the ransomware attack. Our key idea is that, to restore a file corrupted by the ransomware, we (1) restore its file system metadata via file system forensics, and (2) extract its file data via raw data extraction from the FTL, and (3) assemble the corresponding file system metadata and the file data. Another essential aspect of$$\textsf{FFRecovery}$$ is that we add a garbage collection delay and freeze mechanism into the FTL so that no raw data will be lost prior to the recovery and, additionally, the raw data needed for the recovery can be always located. A prototype of$$\textsf{FFRecovery}$$ has been developed and our experiments using real-world ransomware samples demonstrate the effectiveness of$$\textsf{FFRecovery}$$ . We also demonstrate that$$\textsf{FFRecovery}$$ has negligible storage cost and performance impact.more » « less
-
With increasing development of connected and autonomous vehicles, the risk of cyber threats on them is also increasing. Compared to traditional computer systems, a CAV attack is more critical, as it does not only threaten confidential data or system access, but may endanger the lives of drivers and passengers. To control a vehicle, the attacker may inject malicious control messages into the vehicle’s controller area network. To make this attack persistent, the most reliable method is to inject malicious code into an electronic control unit’s firmware. This allows the attacker to inject CAN messages and exhibit significant control over the vehicle, posing a safety threat to anyone in proximity. In this work, we have designed a defensive framework which allows restoring compromised ECU firmware in real time. Our framework combines existing intrusion detection methods with a firmware recovery mechanism using trusted hardware components equipped in ECUs. Especially, the firmware restoration utilizes the existing FTL in the flash storage device. This process is highly efficient by minimizing the necessary restored information. Further, the recovery is managed via a trusted application running in TrustZone secure world. Both the FTL and TrustZone are secure when the ECU firmware is compromised. Steganography is used to hide communications during recovery. We have implemented and evaluated our prototype implementation in a testbed simulating the real-world in-vehicle scenario.more » « less
-
Ransomware is increasingly prevalent in recent years. To defend against ransomware in computing devices using flash memory as external storage, existing designs extract the entire raw flash memory data to restore the external storage to a good state. However, they cannot allow a fine-grained recovery in terms of user files as raw flash memory data do not have the semantics of "files". In this work, we design FFRecovery, a new ransomware defense strategy that can support fine-grained data recovery after the attacks. Our key idea is, to recover a file corrupted by the ransomware, we can 1) restore its file system metadata via file system forensics, and 2) extract its file data via raw data extraction from the flash translation layer, and 3) assemble the corresponding file system metadata and the file data. A simple prototype of FFRecovery has been developed and some preliminary results are provided.more » « less
An official website of the United States government
